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ABSTRACT 

A risk-based decision-making process conceived of and 
developed at JPL and NASA, has been used to help plan and 
guide novel technology applications for use on spacecraft. 
These applications exemplify key challenges inherent in multi-
disciplinary design of novel technologies deployed in mission-
critical settings: 
1) Cross-disciplinary concerns are numerous (e.g., spacecraft 
involve navigation, propulsion, telecommunications).  These 
concerns are cross-coupled and interact in multiple ways (e.g., 
electromagnetic interference, heat transfer).   
2) Time and budget pressures constrain development, 
operational resources constrain the resulting system (e.g., mass, 
volume, power).   
3) Spacecraft are critical systems that must operate correctly the 
first time in only partially understood environments, with no 
chance for repair. 
4) Past experience provides only a partial guide: New mission 
concepts are enhanced and enabled by new technologies, for 
which past experience is lacking. 

The decision-making process rests on quantitative 
assessments of the relationships between three classes of 
information – objectives (the things the system is to accomplish 
and constraints on its operation and development), risks (whose 
occurrence detracts from objectives), and mitigations (options 
for reducing the likelihood and/or severity of risks). The 
process successfully guides experts to pool their knowledge, 
using custom-built software to support information gathering 
and decision-making. 

Keywords: Risk, Decision-making, Design, Novel 
Technology 

 
INTRODUCTION 

NASA's Mission statement reads: “To understand and 
protect our home planet. To explore the Universe and search 
for life. To inspire the next generation of explorers . . . as only 

NASA can.”. In April 2002 the NASA Administrator stated: “… 
In broad terms, our mandate is to pioneer the future . . . to push 
the envelope . . . to do what has never been done before.  …” 
[1]. These quotes emphasize the novel aspects of NASA’s 
activities.  Spacecraft design involves multiple disciplines (e.g., 
interplanetary navigation, spacecraft propulsion, 
telecommunications, properties of materials in deep space 
environments).  Spacecraft development and operation are 
driven by budget and time concerns (e.g., planetary 
configurations dictate launch windows). Spacecraft operate 
remotely from earth; so third-party repair is almost always 
impossible. Their purpose is to yield information of distant, 
unknown environments, meaning they often must operate in 
those same unknown environments. The aim to improve the 
quantity and quality of the science information they gather and  
in return drives the use of novel technologies in novel ways. 

At first glance, these would seem to imply that spacecraft 
development and operation has little in common with earthly 
activities. Certainly the specifics of the information involved 
(e.g., behavior of materials in a deep space environment; 
interplanetary navigation) are particular to space exploration. 
However, the fundamental challenges that underlie NASA’s 
activities are familiar to a wide range of endeavors – the 
challenges stem from the need to do multi-disciplinary design 
of novel technologies intended for deployment in critical 
settings. They are: 
• Multiple disciplines are involved. No single individual has 

depth of knowledge in every one of these disciplines. 
Furthermore, these disciplines are cross-coupled and interact 
in multiple ways. As a consequence, there is the need to pool 
the knowledge from multiple discipline experts, and to 
conduct decision-making taking the sum total of this 
knowledge into account. 
• Time and budget pressures constrain development (an 

almost universal phenomenon, e.g., development of almost 
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any product these days is subject to time to market needs, 
and aspects of competitiveness). Limited operational 
resources constrain many systems (e.g., think of power, 
mass and volume constraints on hand-held devices). 

• Depending upon the purposes for which systems are 
employed, the consequences of failure during their operation 
could range from a minor nuisance to catastrophic. Spacecraft 
may be irreparably lost if things go too badly wrong. On 
earth, the systems themselves may be more repairable, but the 
not necessarily the consequences of their operational failure. 

• Spacecraft must operate in a harsh and often 
unpredictable physical environment. While more may be 
known about the physical operating environment for Earth-
bound systems, considerable uncertainty arises from the 
unpredictability of the ways in which users will make use of 
systems. In the extreme, a deployed system will induce a 
change in the environment around it, leading to an 
unpredictable feedback loop (e.g., the phenomenon of “E-
type Software” described by Lehman [2]). 

• Past experience provides only a partial guide as to how to 
develop the new system. For NASA’s missions, new mission 
concepts are enhanced and enabled by use of new 
technologies, and/or of established technologies applied in 
novel ways. Past experience is lacking in either case. The 
same is true for almost any novel solution to a real world 
problem. 

In response to these challenges, at JPL and NASA we have 
been developing and applying a risk-based approach to analysis 
and decision making for novel system applications. This paper 
summarizes the approach, and indicates how it addresses the 
challenges listed above. 

NOMENCLATURE 
Defect Detection and Prevention (DDP) – a risk-based 

decision-making process conceived of and developed at JPL 
and NASA. 

Objectives – the things the system/technology is to 
accomplish and constraints on its operation and development. 

Risks – the things whose occurrence would detract from 
attainment of Objectives. 

Mitigations – options for reducing the likelihood and/or 
severity of Risks. 

A RISK-BASED ANALYSIS AND DECISION-MAKING 
APPROACH 

The focus of this paper is on a risk-based analysis and 
decision-making approach developed and applied at JPL and 
NASA. The approach is called “Defect Detection and 
Prevention (DDP)”. The name reflects its origins as a structured 
method for planning the quality assurance of hardware systems 
[3]. Since then its scope has expanded to also encompass 
decision-making earlier in the development lifecycle, and to be 
applicable to software, hardware and systems [4]. 

The approach has been generalized to aid in the decision-
making during the early phases of advanced technology and 
system development. Decisions made in these early phases  are 
important because they have the most leverage to influence the 
development to follow. However, decision-making during these 
phases is challenging because information on which to base 
those decisions is incomplete and uncertain, and in the case of 
advanced technologies and systems, there is little past 

experience from which to extrapolate. 

DDP’s Simple yet Quantitative and Detailed Risk 
Model 

DDP offers a conceptually simple yet quantitative, detailed 
model of risk as foundation for reasoning: 
• The simple conceptual core of the DDP risk model rests on 

three sets of information: objectives – the things we want 
the system/technology to achieve, risks – the things that, 
should they occur, detract somewhat from the attainment 
of objectives, and mitigations – the things that we could 
choose to do to reduce risks (by reducing their likelihood 
of occurrence and/or their severity should they occur).  

• The quantitative treatment derives from information on 
how much each risk (should it occur) detracts from 
attainment of each objective, and by how much each 
mitigation (should it be applied) reduces each Risk.  

• The detail arises from the ability to populate the DDP 
model with system/technology specific objectives, risks 
and mitigations. These are open-ended sets of information, 
and the level of detail to which these are populated is not 
pre-ordained, but rather is determined in the course of the 
DDP application process, to the extent necessary to support 
decision-making. 

Note that our use of the word “risk” may be non-standard – we 
have sometimes referred to these as “risk elements” or “failure 
modes”. The DDP model of information does accommodate the 
elements of the traditional definition of risk, as follows: each 
DDP risk item has a likelihood (the calculation of which takes 
into account the effect of mitigations); each DDP risk item has 
a consequence, namely it detracts from attainment of 
objectives.  The usual definition of risk as “probability * 
severity” is a measure we calculate from the DDP information, 
explained further in the next section. 

The combination of these aspects yields an approach that 
can encompass a wide range of concerns – many problems can 
be cast in terms of objectives (what do we want), Risks (what 
can get in the way) and mitigations (what can we do about it). 
Their quantitative treatment allows reasoning about their net 
combined effect. For example, the biggest risks are those with 
the greatest sum total adverse impact on attainment of 
objectives. The ability to incorporate problem-specific detail 
permits the representation and reasoning over system, 
technology and application-specific nuances. 

The later sections will examine the ways in which the DDP 
information model helps address the key challenges of multi-
disciplinary decision making. In preparation, we now expand 
upon the description of the DDP model. 

Details of DDP’s Risk Model 
In more detail, DDP deals with the following three sets of 
information: 
• “Objectives” – these encompass all of the things the 

system/technology is to achieve, how and under what 
conditions it is to be operate, and how it is to be developed. 
In our area of spacecraft technologies, typical examples 
include science return objectives (e.g., quantity and 
resolution of data), aspects of its operational environment 
(e.g., ambient temperature, operating temperature, 
available electrical power), and nature of its development 
(e.g., must be ready for launch 2 years from now). Since 
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not all objectives are equally important, DDP allows 
users to assign “Weights” (numerical values of a unitless 
scale) to reflect their relative importance. For example, 
minimal success criteria (“must-have” capabilities) can be 
assigned high weights, while optional criteria (“nice to 
have” capabilities) can be assigned lesser weights. 

• “Risks” – broadly speaking, all the problems that, should 
they occur, will adversely impact attainment of objectives. 
For hardware, these cover the gamut of failure modes of 
design, assembly (won’t fit, too heavy, etc.) and operation 
(cracks, breaks, short-circuits etc.). For software, these 
include development risks (ambiguous requirements, 
flawed designs, poor contract arrangements, lack of 
configuration management) and risks in the developed 
software (erroneous results, deadlocks, timing errors, poor 
performance, mis-use of computing resources). Human and 
organizational concerns can also be incorporated here (e.g., 
key personnel unavailable; vendor goes out of business).  

• “Mitigations” – the entire range of actions and options to 
reduce risks, including preventative measures (e.g., 
training of personnel, use of design standards), alleviations 
(e.g., hardware redundancy; software bounds checking that 
make a software component more resilient to erroneous 
inputs), and detections (e.g., design reviews, code 
inspections, analyses, tests of all kinds) that can potentially 
detect problems ahead of their manifestation in use, and so 
allow for their correction. There are almost always 
resource costs associated with mitigations (e.g., budget and 
schedule; for spacecraft hardware, power, volume and 
mass are perennial concerns; for spacecraft software, CPU 
and memory utilization), and one of the primary purposes 
of DDP is to help guide the selection of mitigations that 
reduce risk in a cost-effective manner. 
In DDP, information in these three categories is 

quantitatively linked. Risks are quantitatively related to 
objectives to indicate how much a risk, should it occur, 
adversely impact an objective’s attainment. Mitigations are 
quantitatively related to risks to indicate how much a 
mitigation, should it be applied, will reduce a risk (by 
preventing it from occurring in the first place, by detecting it 
and so allowing for its repair, or by reducing its impact on 
objectives).  

The overall structure of a DDP information model is 
relatively simple – see Fig. 1. However in practice there can be 
numerous items and links among them. For example, the 
topology of the data in a recently completed DDP study (of a 

technology intended for spacecraft application) is shown in Fig. 
2. This comprises 29 objectives, 58 risks, 36 mitigations, and 
some 900 links among them.  

MULTI-DISCIPLINARY CONCERNS 
The single most important aspect of the DDP approach is 

that it supports multiple experts pool their knowledge and 
allows them to take the sum total of their pooled knowledge 
into account as they make decisions. This helps address two 
key concerns of multi-disciplinary studies, namely: 

• No single individual has depth of knowledge in every 
one of the disciplines, and 

• Disciplines are cross-coupled and interact in multiple 
ways. 

 DDP enables pooling of multiple experts’ knowledge by 
utilizing: 

• a structured group process to elicit in-depth 
information from experts,  

• software support to perform calculations and search 
over the entirety of the gathered information (e.g., 
calculate aggregate risk information, search for near-
optimal solutions), and 

• cogent visualizations to present the information back 
to the experts and so retain their engagement in a risk-
informed decision-making process.  

The DDP process is conducted in a group setting in which 
all the experts relevant to the technology/system under 
consideration are simultaneously involved. It is crucial the 
experts’ combined areas of expertise span the concerns of the 
study, and that those experts are able and willing to contribute 
their expertise. In this respect DDP is akin to traditional risk 
assessment methods, which gather their risk information from 
representatives of all relevant disciplines. However, DDP 
differs by seeking more fundamental kinds of information than 
do typical risk assessment methods. This provides opportunities 
for experts to contribute specific and detailed knowledge. The 
DDP software tool performs the calculations to pool their 
separately contributed items, and present that information back 
to the experts.  

DDP’s use of fundamental risk information 
Most risk assessment methods take as starting point a 

technology/system incorporating all the risk reducing measures 
to be applied to make that technology/system reliable. They 
focus on the risks remaining in that technology/system. In 

Figure 1. Topology of DDP information model Figure 2. Topology of data in a completed DDP model 



 4 Copyright © 2003 by ASME 

particular, these methods ask experts to provide, for each risk, 
estimates of the remaining likelihood and impact of that risk. 
The product of these is the usual definition of risk (sometimes 
referred to as “risk exposure”), formula (1): 

risk = likelihood × severity (a.k.a. consequence)  (1) 

In contrast, DDP takes as starting point a 
technology/system separate from the risk reducing measures 
expected to be applied. Those are represented separately, 
explicitly accounting for their risk reducing effects. The risks 
remaining in the design are calculated from the a-priori risks, 
and the risk reductions effects of the mitigations. In detail, DDP 
asks experts to provide, for each risk, estimates of: 

• what would be its likelihood of occurrence were 
nothing done to prevent it, and 

• what adverse impacts it would have on objectives 
should it occur, and 

• what likelihood- and severity- reducing effects each of 
the mitigations would have on that risk were they to be 
applied. 

The first two are combined to calculate the unmitigated 
contribution of a risk, using the formula (2): 

 Unmitigated-Risk(R) =  
 A-Priori-Likelihood(R) ×  

Σ  (O ∈  Objectives) : Impact(R, O) × Weight(O) (2) 

where A-Priori-Likelihood(R) is risk R’s likelihood were 
nothing done to prevent it, Impact(R, O) is the proportion of the 
objective O that would be lost were R to occur, and Weight(O) 
is the weighting (importance) ascribed to objective O.  The 
summation of Impact × Weight over all objectives adds up the 
risk’s total severity were it to occur. 

Note that the information on a risk’s impacts on objectives 
is explicit and separate from information on the objectives’ 
weights. This gives an opportunity to different discipline 
experts to contribute their own knowledge. Typically the 
mission scientists will be the ones who ascribe relative weights 
to the various science objectives (e.g., the relative importance 
of measuring the water content in soil vs. the importance of 
measuring atmospheric composition). The inventors of a novel 
piece of technology may be the most knowledgeable in 
estimating the adverse effect of a particular type of failure. The 
discipline engineers may be the most knowledgeable in 
estimating the a-priori likelihood of a given fault (e.g., single 
event upsets caused by radiation). 

DDP then goes on to calculate the risk remaining after 
taking into account the risk-reducing effects of mitigations, 
using formula (3):  

 Mitigated-Risk(R) =  
 Unmitigated-Risk (R) ×  

Π (M ∈  Mitigations) : (1 - Effect(M, R)) (3) 

where Effect (M, R) is the proportional risk reduction that 
Mitigation M has on Risk R.  The product of (1 – Effect) over 
all mitigations is DDP’s formula for calculating the combined 
effect of multiple mitigations against the same risk. The 
intuition is that a mitigation acts like a “filter”, reducing a risk 
by some proportion; multiple mitigations act like filters in 
series. For example, a mitigation with an effect of 0.8 against a 
risk reduces that risk by that proportion, leaving (1 – 0.8) = 0.2 
of the risk remaining; a subsequent mitigation with an effect of 
0.7 against that same risk reduces the 0.2 that’s left of that risk 
further, leaving 0.2 × (1 – 0.7) = 0.2 × 0.3 = 0.06 of the risk 
remaining. For a more detailed discussion of DDP’s risk model 
the reader is referred to [5]. 

Note that the information on a mitigation’s effect at 
reducing a risk is explicit and separate from information on the 
risk’s impact. This provides another opportunity to different 
discipline experts to contribute their own knowledge. For 
example, the testing and quality assurance experts may have the 
best knowledge of how effective a given practice is at detecting 
problems which can then be repaired (e.g., formal inspections 
of software requirements may uncover defects which can 
quickly and easily be corrected while early in the software 
development process). 

DDP’s calculation and presentation of aggregate risk 
Custom software has been developed to support all the 

steps of the DDP process. In particular, DDP supports pooling 
the fundamental risk data that the experts provided, and 
presenting the aggregate risk information back to those experts 
via cogent visualizations. 

As described in the previous section, the sum total impact 
of a risk on objectives is calculated from the objectives’ 
relative weights, how much the risk adversely impacts those 
objectives (taking into account the mitigations that reduce its 
impact), and how likely it is to occur (taking into account the 
mitigations that reduce its likelihood). This is done for each of 
the risks.  

As example is shown in Fig. 3, where both the 
Unmitigated-Risk and the Mitigated-Risk values have been 
calculated for each of the 58 risks, and the results plotted in a 
bar chart. This is a screenshot taken from the DDP software 
operating on actual data taken from one of the DDP conducted 
risk studies. The data shows risks at an intermediate stage, 
when only some of the mitigations have yet been identified; by 

Figure 3. Graphical presentation of risks sorted into descending order of remaining risk levels 
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the conclusion of the study risks had been reduced much further 
than this chart shows. 

DDP also calculates the sum total risk against each 
objective, which when presented in a similar bar chart allows 
experts to see the status on an objective-by-objective basis. 

Finally, DDP includes a capability to do straightforward 
sensitivity analysis of the quantitative estimates that populate a 
DDP model. For example, given a selection of mitigations, one-
by-one each effectiveness value connecting a mitigation to a 
risk is perturbed (we offer the user a choice of several ways to 
do this, e.g., proportional reduction, reduction to zero), and the 
benefit is recalculated. The results are then ranked in 
decreasing order of the change to the benefit value. 

 
CONSTRAINED DEVELOPMENT 

Time and budget pressures constrain the 
development of systems and technologies, and 
limited operational resources constrain systems 
themselves. The fundamental observation is that it 
takes an expenditure of resources to apply the 
mitigations that reduce risks, and hence the 
selection of those mitigations must be driven by 
consideration of both the benefits (risks reduced) 
and costs (resources consumed). Decision-making 
involving cost/benefit tradeoffs in this constrained 
setting is facilitated in DDP by: 

• Capturing the cost information in the DDP 
data model 

• Automatic calculation of total costs and 
benefits for given selections of mitigations 

• Heuristic search to locate near-optimal 
cost/benefit solutions 

• Calculation and presentation of the 
cost/benefit tradeoff space 

 
The DDP date model includes a place to record 

resource cost information associated with 

mitigations (of course, this requires that the experts provide this 
information). For a given selection of mitigations, the DDP 
software computes the sum of their costs. When experts make 
decisions as to which mitigations to apply, they take into 
account both their costs, and their benefits (namely, the 
increase in attainment of objectives that results from the effect 
of mitigations at reducing risks). The DDP model also 
accommodates another important source of cost, namely the 
cost of repair of problems detected during development. For 
example, a fatal problem discovered at test time will necessitate 
some kind of repair, part replacement, rebuild etc. In the DDP 
model information on such costs is associated with the risks 
themselves – the cost of repairing the problem (risk) depends 
on what it is, not how it was discovered (i.e., which mitigation 
detected it). Furthermore, DDP accommodates the escalation of 
repair costs that occurs when repairs are made later rather than 
sooner. 

For non-trivial DDP applications, the search space of 
possible mitigation selections is huge. For example, in the 
application whose data is pictured in Figure 1, there are 36 
individual mitigations, so the number of possible selections of 
such is 236 (more than 1010). In other DDP applications we have 
seen even greater numbers of mitigations, with correspondingly 
larger search spaces. Furthermore, selecting an optimal set of 
mitigations for a given cost ceiling is non-trivial, because of the 
interconnectedness seen in Figure 2. For example, the simple 
strategy of selecting mitigations one by one, at each step 
picking from the as-yet unselected still affordable mitigations 
the one that achieves the most risk reduction per unit cost,  is 
not guaranteed to yield the optimal solution. 

These considerations make cost-effectively selecting 
mitigations a considerable challenge. In response, DDP uses the 
heuristic search technique of simulated annealing to locate 
near-optimal selections. Figure 4 shows an example of DDP’s 
search for a near-optimal solution in a study with 58 
mitigations: the search has been directed to look for maximal 

Figure 4. Search for an optimal cost-bounded solution 

Figure 5. Entire cost/benefit trade space 
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attainment of objectives while costing no more than $1 million. 
The black cloud on the figure is composed of thousands of 
points, each one corresponding to a distinct selection of 
mitigations. The location of each point on the horizontal axis is 
determined by the cost of that solution (as calculated by DDP), 
and location on the vertical axis by the benefit, i.e., attainment 
of objectives (again, as calculated by DDP). The cost ceiling of 
$1 million is indicated by the vertical line, about a third of the 
way from the left. All the points on or to the left of the line cost 
less than or equal to that cost ceiling, so the optimal is the point 
highest up in that region, the vicinity of which is pointed to. 

In addition to simulated annealing, we have also explored 
the use of other heuristic search techniques for finding near-
optimal solutions. Further information on this work is reported 
in [6]. 

From an amalgamation of a series of such searches DDP 
can reveal the entire cost/benefit trade space, as shown in 
Figure 5. The upper left boundary of the widespread black 
cloud of points represents the optimal boundary (a.k.a. the 
“Pareto front”). Experts can look at this overall space to help 
decide the region of spending they would prefer. Depending on 
how risk averse they are, they may wish to extend partway to 
the right of what is here labeled as the “sweet spot” – the 
purpose of this kind of search and plot is to make the human 
decision makers aware of the nature of the overall cost/benefit 
trade space.   

 

CRITICAL NATURE, UNKNOWN/UNPREDICTABLE 
ENVIRONMENT, AND LACK OF EXPERIENCE BASE 

Spacecraft are critical systems that must operate correctly 
in only partially understood environments with no chance for 
repair. Furthermore, spacecraft often employ new technologies 
to yield better science return, etc. Past experience provides only 
a partial guide in these cases.  

When knowledge and experience is lacking, no process can 
claim to yield perfect answers. The advantage that DDP 
conveys is that it encourages a more detailed decomposition of 
the problem, so that well understood aspects can be separated 
from the less understood aspects. Because of the critical 
systems nature of our studies, where aspects are poorly 
understood, we err on the side of caution. We use a pessimistic 
estimate of the impact of a risk on an objective, and the 
pessimistic estimate of the effectiveness of a mitigation at 
reducing a risk. We are often find it advantageous to 
decompose an item (e.g., a risk) into subcases, those that we do 
understand well, and can accurately score the impacts of, etc., 
and those that we understand less well, for which we adopt the 
pessimistic posture. 

The overall purpose of gathering the information within 
DDP is to help guide decision-making. It may well turn out that 
even with pessimistic assumptions, a number of well-
understood risks still emerge as more serious than certain less 
understood risks. For example, compare risks that relate to the 
challenging time of planetary landing phase with risks that 
relate to operation of a rover on the planetary surface. We 

Figure 6. Screenshot of DDP in use to examine detailed risk information 
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might have a much greater understanding of the relevant 
aspects of former environment (e.g., atmospheric density) than 
of the latter (e.g., composition of the soil over which a rover 
will move). However, a failure during landing is almost 
certainly going to be fatal, while a failure to move up a slope on 
the surface may simply bring the rover to a halt. This may 
direct our decision-making as to where to appropriately expend 
our mitigation resources. When risks do show up as significant, 
the DDP tool gives the experts the ability to scrutinize those 
risks in detail, by looking at the objectives they impact, and the 
mitigations that could be applied to reduce those risks. If it 
turns out that risks cannot be satisfactorily reduced with the 
resources available, DDP can help experts understand how to 
“descope” their mission (i.e., select which objectives to 
abandon so that resources can be better directed to quell the 
risks impacting the remaining objectives, and not squandered n 
what turns out to be an especially challenging objective, say). 

The key to all these is the simultaneous ability to view the 
“big picture” of risks, objectives’ attainment, cost of selected 
mitigations, along with the ability to drill down in detail into 
the data that underlies these calculations. DDP offers a number 
of cogent visualizations that support such investigations. To 
convey a feel for DDP’s capabilities in this regard, Figure 6 
shows (most of) a screenshot of DDP in use to examine detailed 
risk information. Within this screen are the following elements: 
• The bar chart in the lower left pane is showing the status of 

risk against each of the objectives (akin to the bar chart of 
risks seen earlier in Fig. 3, but here each bar corresponds to 
an objective, and the heights correspond to various 
measures of risk to that objective). 

• The hierarchy of objectives is shown in the upper right 
pane (in this image we have truncated the right of the 
screenshot to hide the actual names of objectives, since this 
is data of a proprietary nature). One of the objectives has 
been brought “in focus”, meaning the tool highlights it, and 
displays information particular to that objective. Alongside 
each objective is its user-assigned weight. 

• The fragment of the pane in the lower right shows a 
summary view of the risks on that objective, where each 
risk is portrayed as a small rectangle whose width is 
proportional to the risk’s impact on that objective. 

• The large pane in the upper left, filled with a multitude of 
rectangles and checkboxes, shows in greater detail the risks 
that impact the in focus objective. Alongside each risk are 
tiny checkboxes coupled with rectangles. Each represents a 
mitigation which (if applied) reduces the risk it is listed 
alongside. The checkbox is checked if and only if the 
mitigation is currently selected for application. The user 
can click to toggle this checked status, causing DDP to 
recalculate risks, costs, etc., in response. 

• The resource meter is shown floating over the top middle 
of the screen. This keeps a running total of the resource 
costs of the checked (i.e., selected for application) 
mitigations. 

At first sight this appears a dauntingly complex display, but in 
practice it serves to convey the risk-related information to the 
experts in such a way as to aid them in their decision making. 
The responsiveness of the DDP software helps in this regard – 
when the user clicks a checkbox to toggle the status of a 
mitigation, complete recalculation and display update is fast. 
For a typical DDP dataset with a hundred or so in total of 

objectives, risks and mitigations, and on the order of a thousand 
links among them, this takes on the order of one second, 
operating on a modern-day PC laptop. Thus it is possible for 
experts to quickly try “what if” experiments – e.g., “what 
would be the change to cost and risk if we turned off that 
mitigation and turned on that other one?” The bar chart displays 
can help in these “what if” explorations, by visual presentation 
of the changes to risks from some baseline. In fact this is just 
barely discernable on the barchart in Fig. 6: some of the bars 
have three shades of gray, the lightest indicating how much the 
risk against that objective has dropped compared to a 
previously set baseline. 

 
SUMMARY AND CONCLUSIONS 

DDP has now been applied to make risk-informed 
decisions in over 20 different studies of advanced technologies 
intended for spacecraft use. The nature of the decisions has 
varied. In some cases the primary outcome has been selection 
of a suite of mitigations that in concert will cost-effectively 
reduce risk to sufficiently low levels. The ability to search and 
reveal the cost/benefit tradeoff space has been of assistance 
here. In other cases the primary outcome has been selection 
from among major design alternatives, using DDP to study the 
risks of each and indicate the cost of mitigating the risks in 
each option. In almost all cases the process leads to clarification 
of requirements. In one of the studies, a particularly 
problematic requirement was identified. It was found to be 
problematic because the cumulative risk information 
contributed by the engineering experts showed the requirement 
to be significantly at risk, and furthermore showed that 
sufficient mitigation of those risks would be very expensive in 
terms of schedule and budget. The net result was that the 
mission scientists were motivated to rethink their objectives, 
and make the problematic one a much lower priority. 

We have not performed any formal experiments to measure 
the overall effectiveness of DDP applications. We do know the 
cost – predominantly the time of the experts involved in 
populating the study with data and making decisions. For 
example, a typical DDP application, with 15 participants in all 
four of the 4-hour sessions, consumes 240 hours (6 work 
weeks) of time. We require the participation of experts. Such 
people are always in demand, so this is by no means a trivial 
investment of time. Estimating the benefit of DDP applications 
is much more subjective. We are encouraged as to the validity 
and utility of the findings that DDP yields for the following 
reasons: 
1. Most of the results calculated by DDP, based on the 

information gathered from the multiple discipline experts, 
match those experts’ overall intuitions. For example, 
DDP’s list of most significant risks that remain despite 
application of mitigations is usually in agreement with 
what the experts tell us they would have expected. Overall 
this suggests that the detailed information we are gathering 
from those experts, and the ways we combine that 
information in DDP’s risk calculations, is reasonably valid. 

2. In almost every case study there is some result calculated 
by DDP that is a “surprise”. That is, it does not match the 
experts’ intuitions (e.g., a risk shows up as more significant 
than they would have anticipated). Furthermore, when the 
experts look at the detail underpinning that result (and the 
capability of DDP to let them explore the details as well as 
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see the big picture is crucial in this regard), they concede 
that the “surprise” is a genuine finding. Overall this 
suggests that the approach we follow is capable of findings 
that would be overlooked by even a well-qualified set of 
experts. 

3. The decisions arrived at with the aid of DDP have led to 
much clarified in problem statements (objectives), better 
substantiated cost estimates, well-organized rationales for 
development plans, and, in some cases, very significant 
cost savings by stimulating design revisions motivated by 
the realization that resources were being mis-applied to 
(over)address a relatively tiny risk area, while other risk 
areas were in more dire need of attention. Perhaps the most 
important aspect shared by these decisions is that they are 
being made relatively early in the technology or system 
lifecycle, when the costs of revising choices are still 
relatively small. In contrast, fundamental design changes 
later in development incur much higher costs. 

4. DDP is not a mandated activity, yet is seeing increasing 
use. The earlier DDP applications were supported by 
research funding (as was the development of the DDP 
process and support software itself). Specifically, the 
discipline experts’ time was covered by this funding. More 
recently, there has been a trend to the use of DDP paid for 
predominantly by the technology/system under scrutiny. 
While we continue to use research funds to expand DDP’s 
capabilities, the bulk of the cost of performing the risk 
studies themselves, namely the cost of the discipline 
experts’ time, is no longer being borne by the research 
funding. This, plus the increasing frequency of DDP based 
studies, is indicative of an expanding acceptance of the  net 
value of the DDP process. 

Related work 
Early decision-making is often assisted by qualitative 

decision support methods. For example Quality Function 
Deployment (QFD) has been used in a wide variety of settings 
[7]  DDP’s effect and impact matrices are reminiscent of the 
Relationship Matrix used in many forms in QFD. DDP is 
distinguished by its foundation upon a quantitative risk model, 
which gives meaning to DDP’s cost and benefit calculations. 

As a design matures there are other decision support 
techniques that better capitalize upon knowledge of design 
details. For example, probabilistic risk assessment techniques 
(e.g., fault tree analysis, Bayesian methods) compute overall 
system reliability from design knowledge of how the system is 
composed of those components, and estimates of individual 
component reliabilities. The origins of these approaches lie in 
applications to assess risk in the nuclear power industry [8], 
with its need to estimate the probability of catastrophic failure 
(e.g., meltdown) from knowledge of the power system’s design, 
and reliability measures for the components used in that design. 
Fault Tree Analysis [9] is now applied to a wide variety of 
systems, both hardware and software (e.g., software fault tree 
analysis [10]) including some NASA missions and their 
hardware and software components [11]. In contrast, DDP aims 
to fill the niche of early decision making for advanced 
technology and system development. We are currently 
exploring means to connect DDP and PRA techniques [12]. 
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